Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2679, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302543

RESUMO

Serpentine microchannels are known for their effective particle focusing through Dean flow-induced rotational effects, which are used in compact designs for size-dependent focusing in medical diagnostics. This study explores square serpentine microchannels, a geometry that has recently gained prominence in inertial microfluidics, and presents a modification of square wave microchannels for improved particle separation and focusing. The proposed modification incorporates an additional U-shaped unit to convert the square wave microchannel into a non-axisymmetric structure, which enhances the Dean flow and consequently increases the Dean drag force. Extensive experiments were conducted covering a wide range of Reynolds numbers and particle sizes (2.45 µm to 12 µm). The particle concentration capability and streak position dynamics of the two structures were compared in detail. The results indicate that the modified square-wave microchannel exhibits efficient particle separation in the lower part of the Dean vortex-dominated regime. With increasing Reynolds number, the particles are successively focused into two streaks in the lift force-dominated regime and into a single streak in the Dean vortex-dominated regime, in this modified square wave geometry. These streaks have a low standard deviation around a mean value. In the Dean vortex-dominated regime, the location of the particle stream is highly dependent on the particle size, which allows good particle separation. Particle focusing occurs at lower Reynolds numbers in both the lift-dominated and lift/Dean drag-dominated regions than in the square wave microchannel. The innovative serpentine channel is particularly useful for the Dean drag-dominated regime and introduces a unique asymmetry that affects the particle focusing dynamics. The proposed device offers significant advantages in terms of efficiency, parallelization, footprint, and throughput over existing geometries.

2.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36904992

RESUMO

In this paper, two of the most common calibration methods of synchronous TDCs, which are the bin-by-bin calibration and the average-bin-width calibration, are first presented and compared. Then, an innovative new robust calibration method for asynchronous TDCs is proposed and evaluated. Simulation results showed that: (i) For a synchronous TDC, the bin-by-bin calibration, applied to a histogram, does not improve the TDC's differential non-linearity (DNL); nevertheless, it improves its Integral Non-Linearity (INL), whereas the average-bin-width calibration significantly improves both the DNL and the INL. (ii) For an asynchronous TDC, the DNL can be improved up to 10 times by applying the bin-by-bin calibration, whereas the proposed method is almost independent of the non-linearity of the TDC and can improve the DNL up to 100 times. The simulation results were confirmed by experiments carried out using real TDCs implemented on a Cyclone V SoC-FPGA. For an asynchronous TDC, the proposed calibration method is 10 times better than the bin-by-bin method in terms of the DNL improvement.

3.
Lab Chip ; 14(22): 4338-43, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25178818

RESUMO

We demonstrate time-correlated single photon counting (TCSPC) in microfluidic droplets under high-throughput conditions. We discuss the fundamental limitations in the photon acquisition rate imposed by the single photon detection technique and show that it does not preclude accurate fluorescence lifetime (FLT) measurements at a droplet throughput exceeding 1 kHz with remarkable sensitivity. This work paves the way for the implementation of innovative biomolecular interaction assays relying on the FLT detection of nanosecond-lived fluorophores for high-throughput biotechnological applications, including high-throughput screening or cell sorting potentially allowed by droplet microfluidics or other fast sample handling facilities.


Assuntos
Corantes Fluorescentes/análise , Ensaios de Triagem em Larga Escala/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Desenho de Equipamento , Fluorescência , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...